March 18, 2009

	Points Earned	Points Possible
Page 1		20
multiple choice		
Page 2		24
Page 3		26
Page 4		24
Page 5		12
		100
Total		106

Note: All work must be shown to receive credit. On calculation problems show answer with the correct number of significant figures using scientific notation if necessary.

Avogadro's number 6.022 x 10²³/mol

PERIODIC CHART

IA																VIIA	NOBLE GASES
1 H 1.008	IIA											IIIA	IVA	VA	VIA	1 H 1.008	2 He 4.002
3 Li 6.941	4 Be 9.012		Transition Metals»										9 F 19.00	10 Ne 20.18			
11 Na 23.00	12 Mg 24.30	IIIB	IVB	VB	VIB	VIIB	ÉÍ	ÍÍVIIIBÍÍ	ÍÍ»	IB	IIB	13 AI 27.00	14 Si 28.09	15 P 30.97	16 S 32.06	17 CI 35.45	18 Ar 39.95
19 K 39.10	20 Ca 40.08	21 Sc 44.96	22 Ti 47.90	23 V 50.94	24 Cr 52.00	25 Mn 54.94	26 Fe 55.85	27 Co 58.93	28 Ni 58.70	29 Cu 63.55	30 Zn 65.38	31 Ga 69.72	32 Ge 72.59	33 As 74.92	34 Se 78.96	35 Br 79.90	36 Kr 83.80
37 Rb 85.47	38 Sr 87.62	39 Y 88.91	40 Zr 91.22	41 Nb 92.91	42 Mo 95.94	43 Tc (99)	44 Ru 101.1	45 Rh 102.9	46 Pd 106.4	47 Ag 107.9	48 Cd 112.4	49 In 114.8	50 Sn 118.7	51 Sb 121.8	52 Te 127.6	53 I 126.9	54 Xe 131.3
55 Cs 132.9	56 Ba 137.3	57 La 138.9	72 Hf 178.5	73 Ta 180.9	74 W 183.9	75 Re 186.2	76 Os 190.2	77 Ir 192.2	78 Pt 195.1	79 Au 197.0	80 Hg 200.6	81 TI 204.4	82 Pb 207.2	83 Bi 209.0	84 Po (209)	85 At (210)	86 Rn (222)
87 Fr (223)	88 Ra 226.0	89 Ac 227.0	104 Rf (261)	105 Db (262)	106 Sg (263)	107 Bh (262)	108 Hs (265)	109 Mt (268)	110 ?? (222)								

Lanthanide series

Actinide series

58	59	60	61	62	63	64	65	66	67	68	69	70	71
Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
140.1	140.9	144.2	(147)	150.4	152.0	157.3	158.9	162.5	164.9	167.3	168.9	173.0	175.0
90	91	92	93	94	95	96	97	98	99	100	101	102	103
Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
232 0	231 0	238 0	(237)	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(260)

Part 1 - Multiple Choice (20 points)

- 1. Each atom of a specific element has the same
 - a. Atomic mass
 - b. Mass number
 - c. Number of neutrons
 - d. Number of protons
 - e. None of the above
- 2. What charge does an anion possess?
 - a. Neutral
 - b. Positive
 - c. Negative
 - d. Unable to determine
- 3. Which pair of symbols represents isotopes?
 - a. ${}^{22}_{11}Na$ and ${}^{23}_{12}Na$
 - b. ${}_{3}^{7}Li$ and ${}_{3}^{6}Li$
 - c. $^{63}_{29}Cu$ and $^{29}_{64}Cu$ d. $^{12}_{24}Mg$ and $^{12}_{26}Mg$

 - e. all of the above
- 4. The mass of an atom is primarily determined by the mass of its
 - a. Protons
 - b. Neutrons
 - c. Electrons
 - d. Both neutrons and electrons
 - e. Both protons and neutrons
- 5. An atom of atomic number 53 and mass number 127 contains how many neutrons
 - a. 53
 - b. 127
 - c. 74
 - d. 180
- 6. Which of the following contains the largest number of moles?
 - a. 1.0 go Na
 - b. 1.0 g Al
 - c. 1.0 g Ag
 - d. 1.0 g Li

7. The reaction

 $BaCl_2 + (NH_4)_2CO_3 \rightarrow BaCO_3 + 2 NH_4Cl$

- is an example of
- a. A single displacement reaction
- b. A double displacement reaction
- c. A combination reaction
- d. A decomposition reaction
- 8. The reaction

$$2 \text{ PbO}_2 \rightarrow 2 \text{ PbO} + \text{O}_2$$

is an example of

- a. A double displacement reaction
- b. A single displacement reaction
- c. A combination reaction
- d. A decomposition reaction
- e. Unable to determine

Given the activity series Mg>Zn>Cu>Ag, predict the products of the following reactions.

- 9. $Mg + Cu(NO_3)_2 \rightarrow$
 - a. $MgNO_3 + Cu$
 - b. $Mg(NO_3)_2 + Cu$
 - c. $MgCu + 2 NO_3$
 - d. No reaction
 - e. Unable to determine based on information provided
- 10. Ag + $Zn(NO_3)_2 \rightarrow$
 - a. $AgNO_3 + Zn$
 - b. $Ag(NO_3)_2 + Zn$
 - c. $Ag_2Zn + NO_3$
 - d. No reaction
 - e. Unable to determine based on information provided

Part 2 – Nomenclature (8 points) Fill in the following table with the correct IUPAC name or formula

IUPAC Name	Chemical Formula
Aluminum phosphite	
Chromium(II) bromide	
Ammonium chlorate	
Sodium carbonate	
	Ca(BrO) ₂
	ZnI_2
	Ba(OH) ₂
	SO ₃

1.	(4 points) What particles in an atom contain practically all of its mass?

2	(4 nc)	oints) F	low is	it nossih	e for	there to	he more	than one	kind	of atom	of the same	element?
4.	τ	<i>J</i> 111163 1 1	10 W 13	11 17055117	~ 101	more w		man one	KIIIG	он аконт	Or the same	CICILICILI

3. (4 points) Explain why the name for $MgCl_2$ is magnesium chloride but the name for $CuCl_2$ is copper(II) chloride.

4. (4 points) What is meant by the physical state of a substance? What symbols are used to represent these physical states and what does each symbol mean?

- 5. (6 points) Balance the equations below
 - a. $P_4 + Cl_2 \rightarrow PCl_3$
 - b. $H_2SO_4 + Al(OH)_3 \rightarrow H_2O + Al_2(SO_4)_3$
- 6. (20 points) Given a 6.24 g sample of the acetylsalicylic acid ($C_9H_8O_4$) or aspirin, calculate the following:
 - a. molar mass of aspirin
 - b. moles of aspirin

c. moles of carbon atoms

d. molecules of aspirin

e. number of oxygen atoms

7. (24 points) Trinitrotoluene, $C_7H_5N_3O_6$, is an explosive otherwise known as TNT. The equation for its combustion is

$$4 \ C_7 H_5 N_3 O_6 \ + \ 33 \ O_2 \ \longrightarrow \ 28 \ CO_2 \ + \ 10 \ H_2 O \ + \ 6 \ N_2$$

a. How many moles of oxygen are required to react with 6.20 mol C₇H₅N₃O₆?

b. How many grams of carbon dioxide will be produced when 3.68 mol of $C_7H_5N_3O_6$ are burned?

c. If 1020 grams of CO₂ are produced in part b, what is the percent yield of the reaction?

d. How many molecules of TNT will react with 99.0 molecules of oxygen gas?

- e. How many molecules of water will be produced by the combustion of 2.00 g of butane?
- f. How many moles of CO_2 will be produced by the reaction of 8.00 moles of TNT with 92.0 moles of oxygen gas?

8.	(7 points) Calculate the empirical formula of cadaverine which is composed of 58.77% C 13.81% H, and 27.42% N.
9.	(5 points) A compound with empirical formula C_2H_4O has a molar mass of 220 g/mol. Determine the molecular formula for the compound.